The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection

نویسنده

  • Jin-peng Liu
چکیده

Short-term power load forecasting is an important basis for the operation of integrated energy system, and the accuracy of load forecasting directly affects the economy of system operation. To improve the forecasting accuracy, this paper proposes a load forecasting system based on wavelet least square support vector machine and sperm whale algorithm. Firstly, the methods of discrete wavelet transform and inconsistency rate model (DWT-IR) are used to select the optimal features, which aims to reduce the redundancy of input vectors. Secondly, the kernel function of least square support vector machine LSSVM is replaced by wavelet kernel function for improving the nonlinear mapping ability of LSSVM. Lastly, the parameters of W-LSSVM are optimized by sperm whale algorithm, and the short-term load forecasting method of W-LSSVM-SWA is established. Additionally, the example verification results show that the proposed model outperforms other alternative methods and has a strong effectiveness and feasibility in short-term power load forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Hybrid Algorithm for Short Term Load Forecasting

In restructuring the electric power industry, the load had an important role for market managers and participants when they develop strategies or make decisions to maximize their profit. Therefore, accurate short term load forecasting (STLF) becomes more and more vital for all market participants such as customer or producer in competitive electricity markets. In this paper, a new hybrid algori...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

Effect of Demand-Side Management in Electricity Price/Load Forecasting in Smart Grids

Electricity price and load forecasting are two important problems for market participants and independent system operators (ISO) in smart grid environments. Most existing papers predict price and load separately, while, the aggregate reaction of consumers can potentially shift the demand curve in the market, resulting in prices that may differ from the initial forecasts. In this regards, demand...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search

Due to the electricity market deregulation and integration of renewable resources, electrical load forecasting is becoming increasingly important for the Chinese government in recent years. The electric load cannot be exactly predicted only by a single model, because the short-term electric load is disturbed by several external factors, leading to the characteristics of volatility and instabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017